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Abstract—Structure of laminar flow and heat transfer, in a two-dimensional horizontal channel differentially heated, with a built-
in triangular prism is investigated from the numerical solutions of complete Navier–Stokes and energy equations. The numerical
scheme is based on Control Volume Finite-Element Method with the SIMPLER algorithm for pressure-velocity coupling. Many standard
test flows are successfully simulated. Results are obtained for Reynolds number ranging from 20 to 250 at Pr =0.71 with constant
physical properties. The flow is especially studied in details for two Reynolds numbers, Re =30 as a sample of the symmetric flow,
and Re =100 as a sample for the periodic flow. Results are presented to show how the presence of such bluff body affects the flow
pattern and the heat transfer from the hot bottom plate to the flow in both cases, symmetric and periodic flows.  2001 Éditions
scientifiques et médicales Elsevier SAS

laminar flow / periodic / obstacle / heat transfer / shedding / vortices / forced convection

Résumé—La convection forcée d’air dans un canal plan différentiellement chauffé et contenant un obstacle ayant la forme d’un
prisme triangulaire est étudiée numériquement. Les équations de conservation sont résolues pour une géométrie bidimensionnelle
par une méthode de volumes finis à maillage non structuré en conservant la vitesse et la pression comme variables dynamiques du
problème. Plusieurs tests de validations du code de calcul ont été réalisés avec succès. Les résultats sont obtenus pour Reynolds
allant de 20 à 250 pour Pr =0,71. L’écoulement est particulièrement étudié en détails pour Re =30 et Re =100 comme étant deux
échantillons respectifs de l’écoulement symétrique et de l’écoulement périodique. L’objectif de ce travail est l’étude de l’effet de
l’obstacle sur la structure de l’écoulement et sur les transferts thermiques.  2001 Éditions scientifiques et médicales Elsevier SAS

ecoulement laminaire / périodique / obstacle / transfert thermique / détachement / tourbillons / convection forcée

Nomenclature

A length of the triangular prism . . . . . . m
B width of the triangular prism . . . . . . m
cf dimensionless skin friction coefficient

= 2(∂u/∂y)w/Re
C Recf
CP specific heat at constant pressure . . . . m2·s−2·K−1

f dominant frequency . . . . . . . . . . . s−1

g gravitational acceleration . . . . . . . . m·s−2

Gr Grashof number = ρ2gβ(Th −Tc)H
3/µ2

H channel width . . . . . . . . . . . . . . m
k thermal conductivity of the fluid . . . . kg·m·s−3·K−1

Nu local Nusselt number = −(∂θ/∂y)y=0

∗ Correspondence and reprints.
E-mail addresses: Hassen.Abbassi@fss.rnu.tn (H. Abbassi),

Said.Turki@fss.rnu.tn (S. Turki), ssbnsrl@ati.tn (S. Ben Nasrallah).

Nu space averaged Nusselt number
〈Nu〉 space and time-averaged Nusselt number
P pressure nondimensionalized by ρu2

max
Pe Peclet number = Re Pr
Pr Prandtl number = µCP/k

Ra Rayleigh number = Gr Pr
Re Reynolds number = umaxB/ν

St Strouhal number = fB/umax
T dimensional temperature . . . . . . . . . . . . . K
umax maximum of u-component at the channel inlet . m·s−1

U velocity vector nondimensionalized by umax
u, v velocity components nondimensionalized by umax
x, y Cartesian coordinates nondimensionalized by H

Greek symbols

β thermal expansion coefficient . . . . . . . . . . . K−1

θ dimensionless temperature = (T − Tc)/(Th − Tc)

Θ dimensionless period
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µ dynamic viscosity of the fluid . . . . . . . kg·m−1·s−1

ν kinematic viscosity of the fluid . . . . . . . m2·s−1

ρ density of the fluid . . . . . . . . . . . . . kg·m−3

τ time nondimensionalized by umax/H

�τ dimensionless time step

Subscripts

c cold
h hot
nb neighboring nodes
av average
w wall

1. INTRODUCTION

Flow past bluff bodies between two parallel walls has
been investigated by many researchers both numerically
and experimentally. This flow situation is popular not
only because of its academic attractiveness but also ow-
ing to the related technical problems associated with en-
ergy conservation and structural design. This type of flow
is of relevance for many practical applications, such as
electronic cooling and heat exchanger systems. Tropea
and Gackstatter [1] investigated experimentally the flow
behind a rectangular cylinder placed on the bottom wall
of a horizontal channel. The reattachment length is con-
sidered as a function of three parameters: Reynolds num-
bers, blockage ratio and length-to-height ratio, experi-
ments were carried out for Reynolds number in the range
150 < Re < 4 500. Davalath and Bayazitoglu [2] carried
out a numerical investigation of developing flow over
an array of rectangular blocks, representing finite heat
sources placed on the bottom of a horizontal channel. The
problem represents a mathematical model for integrated
circuit components placed on horizontal circuit board.
Forced convection in laminar regime and Reynolds num-
ber in the range 100< Re< 1 500 were considered. They
evaluate the heat flux transferred to the flow and the tem-
perature distribution on the surface of blocks. Biswas et
al. [3] presented a numerical study of mixed convection
in a symmetrically heated horizontal channel in presence
of a square cylinder symmetrically placed in the channel
axis. Their study shows that solutions become periodic
and a Von Karman vortex street is formed when Reynolds
number exceeds the limit value 340. They showed that
the thermal buoyancy can perturb the steady wake or at-
tached vortices at the rear of an obstacle and induce tran-
sition to periodic flow. A numerical investigation of the
wake flow behind an equilateral triangular obstacle was
presented by Zielinska and Wesfreid [4]. They showed
that the amplitude of self sustained oscillations in the

wake has a well defined maximum Amax at a certain po-
sition Xmax in the wake. Amax diminishes with decreas-
ing Reynolds number and its position Xmax moves away
from the shedding body. This result is confirmed by ex-
periments of Wesfreid et al. [5].

The present work is concerned with the structure of
laminar flow and heat transfer in a two dimensional
channel differentially heated with a built-in triangular
prism. This specifically shaped cylinder is specially used
in systems of vortex flowmeters and flame stabilizer in
combustion chambers. The investigation is carried out
from the numerical solutions of complete Navier–Stokes
and energy equations by Control Volume Finite Element
Method (CVFEM). After establishing the credibility of
the numerical method by comparing with standard test
flows, the effects of presence of triangular prism on the
flow structure and heat transfer are presented.

2. STATEMENT OF THE PROBLEM

The system of interest is a horizontal plane channel,
a triangular prism is symmetrically placed in the channel
axis as indicated in figure 1. The triangular prism, the
top wall and the incoming stream are assumed to be in
a constant dimensional temperature Tc, while the bottom
wall is at temperature Th. Computations have been
carried out in a channel of dimensionless total length
L/B = 30.75. The summit of the triangle is located at
distance xp = 8B from the inlet, the aspect ratio of the
triangular section is A/B = 0.5, the channel width is
set to be H = 4B . Boundary conditions expressed in
dimensionless form are as follows:

At 0 ≤ x ≤ L/B; y = 0: u= v = 0, θ = 1,

At 0 ≤ x ≤ L/B; y = 4: u= v = 0, θ = 0,

At x = 0; 0 ≤ y ≤ 4: u= y(4 − y)/4, v = 0, θ = 0,

Figure 1. Flow in a horizontal channel with built-in triangular
prism.
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At x = L/B; 0 ≤ y ≤ 4:
∂u

∂x
= ∂v

∂x
= ∂θ

∂x
= 0;

∫ 4

0
u dy = 8/3

3. GOVERNING EQUATIONS

With reference to Newtonian incompressible fluid of
constant physical properties and the Cartesian coordinate
system, the dimensionless equations for continuity, mo-
mentum, and energy may be expressed in the following
conservative form:

div(U )= 0, (1)
∂u

∂τ
+ div(Ju)= −∂P

∂x
, Ju = uU − 1

Re
grad(u), (2)

∂v

∂τ
+ div(Jv)= −∂P

∂y
, Jv = vU − 1

Re
grad(v), (3)

∂θ

∂τ
+ div(Jθ)= 0, Jθ = θU − 1

Pe
grad(θ) (4)

In the above equations the space coordinates, veloci-
ties, time and pressure are normalized with respectively
the width of the triangular prism B , the maximum ve-
locity at the channel inlet umax, the characteristic time
B/umax, and the characteristic pressure ρu2

max. The di-
mensionless temperature θ = (T − Tc)/(Th − Tc) is re-
ferred to suitably defined “hot” and “cold” temperatures.

The thermal heat flux transferred from the hot bottom
wall to the flow is characterized by the space-averaged
Nusselt number evaluated as follows:

Nu = 1

L/B

∫ L/B

0

(
−∂θ

∂y

)
dx (5)

The space- and time-averaged Nusselt number is defined
as:

〈
Nu

〉 =
(

1

τ2 − τ1

)∫ τ2

τ1

Nu dτ (6)

where the time interval (τ2 − τ1) is the period of oscilla-
tion of the space-averaged Nusselt number Nu.

4. NUMERICAL PROCEDURE

A modified version of Control Volume Finite-Element
Method (CVFEM) of Saabas and Baliga [6] is adapted to
the standard staggered grid in which pressure and veloc-
ity components are stored at different points as indicated

Figure 2. (a) Nodal locations on a staggered grid: O: P nodes,
→: u nodes , ↑: v nodes (b) Control-volume for u-component.

in figure 2(a). The control volume is constructed around
every node P by joining the centroids of the triangular
elements to the midpoints of the sides as indicated in fig-
ure 2(b) where we have constructed, as example, the con-
trol volume corresponding to the u-component. Those of
v-component and pressure are obtained by the same man-
ner. Compared to that obtained in classic finite-volume
method, the obtained control volume has more faces and
brings more neighboring nodes.

The conservation equations (2)–(4) are integrated
similarly over each of these control volume to obtain
equations of nodal values for velocity components and
temperature. A special procedure is used to integrate the
mass conservation equation (1).

A shape function describing the variation of the de-
pendant variable φ (= u,v or θ ) is needed to calculate
the flux across the control-volume faces. We have fol-
low Saabas and Baliga [6] in assuming a linear and an
exponential variations respectively when the dependant
variable φ is calculated in the diffusive and the convec-
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tive terms of the conservation equations. More details and
discussions about these functions can be found in refer-
ences [6–9].

Using the Green–Ostrogradsky theorem, integration
of the divergence term in the x-momentum equation (2)
over the control-volume surrounding node P gives:

∫
Vp

[
div(Ju)

]
dv =

∫
S

Ju · n ds (7)

where S is the surface area of the control volume Vp
surrounding node P , and n is a unit outward normal to
the differential surface area ds. Element PAB has two
faces ag and gb bounding the control volume around P ,
the contributions from these two surfaces to the flux of
vector Ju in two-dimensional flow can be written as:∫

S

Ju · n ds =
∫ g

a

(Ju1 · n1 + Ju2 · n2) dl

+
∫ b

g

(Ju1 · n1 + Ju2 · n2) dl (8)

where Jui and ni (i = 1 or 2) are respectively the
components of vectors Ju and n. By Simpson’s rule
we evaluate easily integrals in equation (8). The same
treatment of all faces in all elements neighboring the node
P must be carried out. The other terms in equation (2) are
globally integrated over the entire control-volume around
node P [10]. After integration in space, integration
in time is necessary. Collecting and simplifying, the
discretised x-momentum equation can be written as:

Au
Pup =

∑
nb

Au
nbunb + Vp

〈
−∂P

∂x

〉
+ Vpu

0
p

�τ
(9)

where u0
p refers to the value of up at last time and

〈− ∂P
∂x

〉is the average value of (− ∂P
∂x

) acting over the
entire control volume surrounding node P and evaluated
by assuming a linear variation of pressure. Equations (3)
and (4) for conservation of y-momentum and energy
are integrated similarly and written in the same form as
equation (9).

Av
Pvp =

∑
nb

Av
nbvnb + Vp

〈
−∂P

∂y

〉
+ Vpv

0
p

�τ
, (10)

Aθ
Pθp =

∑
nb

Aθ
nbθnb + Vpθ

0
p

�τ
(11)

The pressure is indirectly specified through satisfaction
of mass conservation equation (1). Equations (9) and (10)

can be rewritten as:

up = ũp +Bu
p

〈
−∂P

∂x

〉
, (12)

vp = ṽp +Bv
p

〈
−∂P

∂y

〉
(13)

where ũp and ṽp represents pseudo-velocities compo-
nents, Bu

p and Bv
p are the pressure-gradient coefficients

defined as:

ũp =
(∑

nbA
u
nbunb + Vpu

0
p/�τ

)
Au

P
, (14)

ṽp =
(∑

nbA
v
nbvnb + Vpv

0
p/�τ

)
Av

P
, (15)

Bu
p = Vp

Au
P
, (16)

Bv
p = Vp

Av
P

(17)

using expressions (14)–(17) pseudo-velocities and pres-
sure-gradient coefficients can be calculated at all nodes
of the domain.

The integration of the mass conservation equation (1)
over the control volume corresponding to the pressure
can be written as:

∫
Vp

(
∂u

∂x
+ ∂v

∂y

)
dv ∼= Vp

{〈
∂u

∂x

〉
+

〈
∂v

∂y

〉}
= 0 (18)

Where the symbol 〈 〉 denotes the average value over the
entire control volume. Following Saabas and Baliga [6]
and Patankar [11] in assuming a linear variation of u
and v components in the treatment of pressure equation,
and substituting equations (12) and (13) in equation (18),
the mass conservation equation yields to the discretized
equation of pressure written in the classic form:

AP
P Pp =

∑
nb

AP
nbPp + bP (19)

where bP is the source term arising from pseudo-velocity
fields.

The SIMPLER algorithm was applied to resolve the
pressure-velocity coupling in conjunction with an Alter-
nating Direction Implicit (ADI) scheme for performing
the time evolution.
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5. VALIDATION

Several standard test flows are successfully simulated.
Comparisons with benchmark solutions and experimental
measurements are shown in this section for three test
problems: Poiseuille–Benard channel flow, laminar flow
over a backward-facing step and flow in a horizontal
channel with a built-in square cylinder.

5.1. Poiseuille–Benard channel flow at
Re = 10, Pe = 20/3 and Ra = 104

This channel flow would be a simple Poiseuille flow
if there were no heating from below and Benard flow
(at Rayleigh number Ra = 104) if the ends were closed.
Governing equations are adimensionnalized by the aver-
age velocity at the inlet and the channel width. To take
into account the effect of thermal buoyancy we must
add the term [θRa/(Pe Re)] to the second member of the
equation (3). In the present test problem our results are
compared to those reported by Sani and Gresho [12], Co-
mini et al. [13] and Evans and Paolucci [14]. At the chan-
nel inlet, a fully developed parabolic profile for the ax-
ial velocity is deployed. No-slip boundary conditions for
velocities on all solid walls are used. The bottom and the
top walls are maintained respectively at hot and cold tem-
perature. At the inlet, a linear variation of temperature is
imposed. At the exit and as in references [12–14], a con-
vective boundary condition is applied for all dependent
variables.

The flow is supposed to be laminar and two-dimensio-
nal. The study of grid dependence indicated in table I
shows that a uniform grid of 140 × 15 is sufficient to
obtain accurate results.

Figure 3 presents streamlines at the instant when
a minimum is reached in the temperature at the midpoint
of the section exit. This figure is analogue to that reported
in reference [12]. More quantitative comparisons con-
cerning the period Θ and the space- and time-averaged
Nusselt number 〈Nu〉 are reported in table II. These re-
sults demonstrate good accuracy and competence of our

TABLE I
Grid dependence.

Grid 101 × 11 140 × 15 161 × 17

〈Nu〉 2.360 2.402 2.412
Number of cells 11 12 12

TABLE II
Poiseuille–Benard channel flow: Re = 10, Pe = 20/3 and

Ra = 104.

Reference Present Comini [13] Evans [14]
Period Θ 1.395 1.273 1.332
〈Nu〉 2.536 2.574 2.558

numerical code. Especially our results are close to that
reported by Evans and Paolucci [14], where the errors
in the period and in the space- and time-averaged Nus-
selt number are respectively 4.7% and 0.87%. It must be
pointed out that results reported in table II are referred to
a domain two times longer than that indicated in figure 3.

5.2. Laminar flow over a
backward-facing step

The geometry and boundary conditions for this flow
are shown in figure 4. The flow is considered to be lam-
inar and two-dimensional. The study of grid dependence
is performed at Re = 400 for three non uniform grids.
48 × 11, 69 × 21 and 106 × 31. Results shows that, when
we pass from a grid of 48 × 11 to 69 × 21 and after
to 106 × 21, the reattachment length undergoes an in-
crease of respectively 8.8% and 0.5%. Then a grid of
69 × 21 is retained. As defined by Armaly et al. [15],
the Reynolds number is based on the bulk velocity at
the inlet boundary and the hydraulic diameter. Reynolds
numbers in the range 100 ≤ Re ≤ 800 are considered
here. In figure 5, numerical results of reattachment length
for different Reynolds numbers are shown in compari-
son with the experimental and computational results of
Armaly et al. [15] and Kim and Moin [16]. The depen-
dence of the reattachment length on Reynolds numbers is

Figure 3. Poiseuille–Benard flow: Streamlines.
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Figure 4. Flow over a backward-facing step (1 : 2 expansion
ratio).

Figure 5. Reattachment length as a function of Reynolds
number: �: Data from Armaly et al. [15]: (a): Computation
of Kim and Moin [16] (grid: 101 × 101); (b): Present results
(69 × 21); (c): Computation of Armaly et al. [15] (45 × 45).

in good agreement with the experimental data for Re up
to about 500, the error is less than 4.5% for Re less than
400 and less than 9.7% for Re up to 500. From Re = 600
computed results start to deviate from the experimental
values. It is most likely, as Armaly et al. [15], Kim and
Moin [16] and Sohn [17] have pointed out that the dif-
ference may have come from three-dimensional effects
of the experiments. In figure 6, we present the numerical
u-velocity distribution for Re = 389 at different channel
sections, compared to the experimental measurements of
Armaly et al. [15]. These figures show that the compari-
son is very good at all sections.

5.3. Flow in a horizontal channel with
a built-in square cylinder

This configuration was investigated numerically and
experimentally by Davis et al. [18] and numerically

Figure 6. u-velocity distribution at various locations for back-
ward facing step. —: Present calculation; �: Data from Armaly
et al. [15].

by Biswas et al. [3]. In this study, we compare our
values of Reynolds and Strouhal numbers, characteriz-
ing respectively the onset and the frequency of vortex
shedding, with those of Davis et al. [18] and Biswas
et al. [3]. The square cylinder is symmetrically placed
in the channel axis. The Reynolds number is as de-
fined in the nomenclature, B represents now the width
of the square cylinder. All results presented are ob-
tained using a non uniform 105 × 21 grid. The use of
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Figure 7. Strouhal numbers versus Reynolds numbers: (a):
Present results(105 × 21); (b): Numerical results of Davis et
al. [18] (76 × 42); �: Experiment of Davis et al. [18].

a more refined grid 131 × 32 lead to an increase of
the Strouhal number of only 3.4% (for Re = 500) with-
out any remarkable change in the global structure of the
flow.

The computational results of the present study show
that the onset of vortex shedding was observed at
a Reynolds number in the vicinity of 115. Davis et
al. [18] observed periodicity in computations at Re =
100. However they employed experimentally obtained
velocity profiles at the channel inlet instead of the par-
abolic profile that we use. This periodicity was observed
by Biswas et al. [3] at Re = 340, but their Reynolds num-
ber is based on the average velocity at the inlet and on
the channel width H . When converted to a Reynolds
number as defined above this value will be Re = 127.
Figure 7 summarizes the variation of Strouhal numbers
with Reynolds numbers. As can be seen, results ob-
tained are in good agreement with those reported by
Davis et al. [18]. The maximum error committed is
less than 6.7% by report to numerical values and less
than 11.7% in comparison with experimental measure-
ments.

6. RESULTS AND DISCUSSION

After verifying that the implemented numerical code
gives accurate results for laminar two dimensional flows
between two parallel plates, a solution for the flow de-
scribed in figure 1 was next sought. Grid refinement
tests have been performed for the case Re = 100 us-
ing three non uniform grids 72 × 13, 105 × 21 and
131 × 32. Results shows that when we pass from a grid
of 105 × 21 to a grid of 131 × 32 the space- and time-

Figure 8. Velocity field for Re = 30.

averaged Nusselt number 〈Nu〉 and the Strouhal number
St undergoes an increase of only 4.2% and 2.8% respec-
tively, then, for reasons of calculation coast, the grid of
105 × 21 is retained (0.18 ≤ �x ≤ 0.6, �y = 0.2) with
a time step �τ = 0.01. In all this study the structure of
the flow fields is specified with the help of velocity vector
plots and confirmed by the behavior of a signal trace of
velocity in the wake. It should be noted that for the peri-
odic flow all solutions are dependent on the time, then, in
the following study curves and velocity fields are given
at an arbitrary instant.

Solutions are first obtained for Re = 30. For this
relatively low Reynolds number, the convergence of
the numerical procedure is easily obtained. Solutions
converge quickly to their asymptotic values. The velocity
profiles at different axial locations in the channel are
symmetrical about the channel axis. Two symmetrical
vortices appear behind the triangular prism on each side
of the wake turning in place in opposite sense (figure 8).

A series of computations were carried out, by increas-
ing slowly the Reynolds number to determine the critical
Reynolds number separating the symmetric and periodic
flows. At Re = 45 the wake loses its original symmetry.
Oscillations in the wake grow in magnitude, and it begins
to shed vortices into the stream. The flow in the wake
becomes periodic. As in references [18, 19], the destabi-
lization of the flow happens without any need of impos-
ing external perturbations, the action of small truncation
errors and computer’s round-off errors were sufficient to
initiate vortex shedding. Figure 9 shows a typical vortex
street behind the triangular prism for Re = 100.
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Figure 9. Velocity field for Re = 100.

Figure 10. Strouhal numbers versus Reynolds numbers. Solid
line: Present study; Dashed line: Empirical law of Fey et al. [22].

Jackson [20] report a critical Reynolds number of 31
from numerical investigation of flow around a triangular
prism of the same geometry as ours but placed in an infi-
nite medium (0% blockage). We estimate that this dif-
ference in Rec is due to the presence of an important
blockage (25%) in our configuration. As mentioned by
Sohankar et al. [21], it may be conjectured that the crit-
ical Reynolds number characterizing the onset of vor-
tex shedding increases with increasing blockage. Zielin-
ska et Wesfreid [4] found a critical Reynolds number of
38.3 from their numerical simulation of wake flow be-
hind an equilateral triangular obstacle (then, aspect ra-
tio = 0.87) with a blockage of 6.66%. The critical value
Rec = 45 is far less then the value correspondent to
a square cylinder placed in the same flow as the present
triangular cylinder (Rec = 115: present work, see Sec-
tion 5.3). This comparison lead to the conclusion that Rec
depends strongly on the geometry of the bluff-body.

Recently, Fey et al. [22], based on their experiments,
propose a new law for the vortex shedding from a circular
cylinder which describes the Strouhal–Reynolds number
dependency as: St = a + b/

√
Re (Re is based on the

diameter of the cylinder and the incoming velocity). In

Figure 11. Variation of skin friction on the channel walls.
Dashed line: Re = 30; Solid line: Re = 100.

Figure 12. Local Nusselt number distribution along the lower
wall. Solid line: flow with triangular prism; Dashed: flow
without triangular prism.

the range 47< Re< 180, coefficients are a = 0.2684 and
b = −1.0356. For the triangular prism, this law is also
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Figure 13. Isotherms at Re = 100 respectively without and with triangular prism from 1 (at the bottom wall) to 0 (at the top wall) by
interval 0.1.

in good agreement with numerical results as indicated
in figure 10, but coefficients are different and takes the
values a = 0.2294 and b = −0.4736. Comparing the
coefficients b we deduce that the Strouhal number varies
more quickly with Reynolds number for the circular
cylinder placed in an infinite media than for triangular
prism placed between two parallel plates.

The local skin friction coefficient C (C = Re cf) is
presented in figure 11. At Re = 30 (symmetric flow),
the coefficient C for the two walls is symmetric about
the value C = 0. This result is expected because the
symmetrical flow behaves by the same manner near the
two plates. The local coefficientC, on both walls increase
(in absolute value) to a peak located behind the triangular
prism, due to the acceleration of the flow, and thereafter
decreases, due to deceleration, and tends toward their
asymptotic values in fully developed flow. At Re = 100
(periodic flow), a complete change of the behavior of C
is observed. Curves become instantaneously waved along
the two walls behind the triangular prism with decrease
amplitude when we move away from the prism. We have
verified for many Reynolds numbers and at different
instants that the maximums (in absolute value) of the
local coefficient C coincides always with tops of the Von
Karman street.

In the following study our attention will be focused
on the effect of the presence of the triangular prism
on the heat transferred from the hot wall to the flow.
Figure 12 is a plot of the local Nusselt number along
the hot plate. At Re = 30, the presence of triangular
prism has just a little local effect by increasing slowly
the local Nusselt number. In contrast, at Re = 100 the
effect of the presence of the triangular prism is more

Figure 14. Variation of the space- and time-averaged Nusselt
numbers with Reynolds numbers. Upper curve: Flow with
triangular prism; Lower curve: Flow without triangular prism.

important, the solid line is well disturbed, but appears
floating above the dashed line. An immediate conclusion
can be made: the periodic flow leads to favour the heat
transfer from the hot plate to the near flow, this heat is
immediately transported by the Von Karmen street to the
medium flow. This conclusion is confirmed in figures 13
where we present the isotherms in presence and absence
of the obstacle at Re = 100. The thermal boundary layer
in presence of the triangular prism is well disturbed by
the periodic flow, especially isotherms 0.1 and 0.2 are
removed far away and tend to be convected toward the top
plate proving hence that the medium flow is more heated
in periodic flow than in symmetric flow.

Figure 14 summarizes the variation of the space- and
time-averaged Nusselt numbers with Reynolds numbers.
At relatively low Reynolds numbers corresponding to the
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symmetric and the beginning of periodic flows (Re ≤ 50)
the presence of the triangular prism has no significant
effect in the space- and time-averaged Nusselt number
〈Nu〉. Increasing Reynolds number, curves start to sepa-
rate, the presence of the triangular prism leads to an im-
portant increase of the space- and time-averaged Nusselt
number compared with that obtained without prism. At
Re = 250 this augmentation is about 85%.

7. CONCLUSION

A numerical investigation from direct solutions of
complete Navier–Stokes and energy equations of two-
dimensional forced convection of air in a horizontal
channel differentially heated with a built-in triangular
prism was presented. The numerical scheme is based on
Control Volume Finite Element Method adapted to the
standard staggered grid with the SIMPLER algorithm
and the ADI procedure. According to the validation the
obtained numerical code gives accurate solutions.

For the studied configuration shown in figure 1, re-
sults are summarized as follows: (1) the transition from
symmetric flow to periodic flow is observed at Reynolds
number in the vicinity of 45. (2) The Strouhal number of
the periodic flow behaves as: St = 0.2294–0.4736/

√
Re.

(3) For the symmetric flow (Re< 45) the presence of the
triangular prism has only a local weak effects on the heat
transfer and on the flow pattern, while, in periodic flow
(Re ≥ 45), heat transfer is seen to increase strongly with
Reynolds number in presence of the triangular prism.
An augmentation of about 85% in the space- and time-
averaged Nusselt number is recorded at Re = 250. This
result can be of interest in engineering.
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